

Welcome

Inter

WINE

Research Capabilities on Concrete Decarbonisation

-

Dr Ali Kashani ali.kashani@unsw.edu.au

UNSW Decarbonised Concrete Team

Prof. Stephen Foster (Dean of Engineering)

Dr Ali Kashani

Dr Ailar Hajimohammadi

Dr Taehwan Kim

Cement and Concrete Decarbonisation Pathways

UNSW current research capabilities

Ways to achieving a low carbon building industry

Dematerialisation: Higher strength, higher performance materials, additive manufacturing; efficiency gains.

Substitution: Replacement of a higher embodied carbon material with a lower one that gives the same or improved performance.

Capture: Carbon capture and utilisation.

Use of supplementary cementitious materials in concrete

Utilising recycled glass as binder & aggregate

New CO₂ efficient cements

Green concrete with recycled glass as cement and aggregate replacement

Glass as aggregates and SCM in cement-based precast concrete

- Mix designs
- Mechanical properties & durability
- ASR

(Kashani et al.)

Next generation sustainable concrete: trialling recycled glass in geopolymer concrete

Glass as aggregates/SCM in geopolymer concrete

- Mix designs
- Mechanical properties & durability
- Develop specifications (Hajimohammadi et al.)

The reuse of glass from waste photovoltaic modules

Glass as aggregates/ SCM in cement concrete

- Impact of impurities
- Mechanical properties & durability (Hajimohammadi et al.)

Implementation of recycled rubber for acoustic applications

JOHN

HOLLAND

- Elasticity, damping, ductility and desirable freeze and thaw characteristics
- Better noise attenuation
- Lightweight
- Less carbon footprint
- (Hajimohammadi et al.)

Advanced Infrastructural Materials Laboratory

(Taehwan Kim et. al)

□ Shrinkage, Creep, and Restrained Early Cracking of Low Carbon Concrete (LC3 cement/Fly ash/Slag)

□ Self-Healing Capacity and Corrosion of Low Carbon Concrete (LC3 cement/Fly ash/Slag)

Crack healing of 60% slag concrete

3D evolution of crack healing (X-ray μ CT

Digitizing of crack width using confocal microscope

Advanced Infrastructural Materials Laboratory

(Taehwan Kim et. al)

Low Carbon Cements and Alternative Binder Concrete

(Steve Foster et. al.)

New CO₂ efficient cements

High Density Breakwater Armour Units

City of Sydney Pavement Trial

Digital Concrete (3D printing)

Innovation

- through design
- and construction

Account for

concrete to

uptake CO₂

Carbon Capture & Utilisation in Concrete

Ali Kashani

Capture remaining CO₂

Made with CO₂

A sustainable and low-carbon technology that recycles CO2 into construction materials

www.sinkrete.com.au

Account for concrete to uptake CO₂

Sinkrete Performance and Applications

Capture remaining CO₂

"We can only achieve net-zero cement and concrete industry by 2050 through collaborative efforts of all stakeholders"

